skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schill, Steven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Seagrass beds provide tremendous services to society, including the storage of carbon, with important implications for climate change mitigation. Prioritizing conservation of this valuable natural capital is of global significance, and including seagrass beds in global carbon markets through projects that minimize loss, increase area or restore degraded areas represents a mechanism towards this end. Using newly available Caribbean seagrass distribution data, we estimated carbon storage in the region and calculated economic valuations of total ecosystem services and carbon storage. We estimated the 88 170 km2of seagrass in the Caribbean stores 1337.8 (360.5–2335.0, minimum and maximum estimates, respectively) Tg carbon. The value of these seagrass ecosystems in terms of total ecosystem services and carbon alone was estimated to be $255 billion yr−1and $88.3 billion, respectively, highlighting their potential monetary importance for the region. Our results show that Caribbean seagrass beds are globally substantial pools of carbon, and our findings underscore the importance of such evaluation schemes to promote urgently needed conservation of these highly threatened and globally important ecosystems. 
    more » « less
  2. Field measurements have shown that sub-micrometer sea spray aerosol (SSA) is significantly enriched in organic material, of which a large fraction has been attributed to soluble saccharides. Existing mechanistic models of SSA production struggle to replicate the observed enhancement of soluble organic material. Here, we assess the role for divalent cation mediated co-adsorption of charged surfactants and saccharides in the enrichment of soluble organic material in SSA. Using measurements of particle supersaturated hygroscopicity, we calculate organic volume fractions for molecular mimics of SSA generated from a Marine Aerosol Reference Tank. Large enhancements in SSA organic volume fractions (Xorg > 0.2) were observed for 50 nm dry diameter (dp) particles in experiments where cooperative ionic interactions were favorable (e.g., palmitic acid, Mg2+, and glucuronic acid) at seawater total organic carbon concentrations (<1.15 mM C) and ocean pH. Significantly smaller SSA organic volume fractions (Xorg < 1.5 × 10−3) were derived from direct measurements of soluble saccharide concentrations in collected SSA with dry diameters <250 nm, suggesting that organic enrichment is strongly size dependent. The results presented here indicate that divalent cation mediated co-adsorption of soluble organics to insoluble surfactants at the ocean surface may contribute to the enrichment of soluble saccharides in SSA. The extent to which this mechanism explains the observed enhancement of saccharides in nascent SSA depends strongly on the concentration, speciation, and charge of surfactants and saccharides in the sea surface microlayer. 
    more » « less